Semiconductors and Intel

An introduction

intel.

Semiconductors and Intel

Table of contents

Why are semiconductors so important? GO

The exponential computer GO
How chips are made
Foundries, Intel and IDM 2.0
Moore's Law and what it means GO
Why are process nodes important?
Packaging: protect, connect and re-architect GO
Process versus microarchitecture GO
Major processor architectures
Modern chips require a lot of software GO
The high cost of manufacturing GO
Semiconductors take a global path to production GO
Intel's history GO
Intel invests in future technology
Global patent portfolio GO
Intel invests across an unmatched span of markets $\underline{G O}$
Global footprint
Glossary GO

What is a semiconductor?

Semiconductors are essential for the operation of all modern electronic devices

The semiconductor

The term "semiconductor" refers to a material that has electrical conductivity
greater than an "insulator" but less than a "conductor." However, it more
commonly refers to an integrated circuit (IC) or computer chip. The most common semiconductor material is silicon, the main ingredient of computer chips.

Did you know?
Semiconductors are the critical ingredient of computer chips, which are built for many functions. This motherboard is showing at least eight of them (the CPU chipset, memory, storage, BIOS, and input/output chips).

Functions of semiconductors might include the amplification of signals, switching and energy conversion

Semiconductors are everywhere

Why are semiconductors

\$10-15B
 The approximate cost to build a new semiconductor factory or "fab"

Nearly the size of the world's largest semiconductor fab

The number of construction, high-tech \& support jobs a semiconductor fab typically creates
+\$440B
2020 revenue from the global semiconductor industry

The exponential computer

From a few in the world to many per person

1960s Mainframe Era
1 computer 1000s of users

1980s Desktop/PC Era
1 computer
luser

2000s Mobility Era
Several computers
luser

2020s Ubiquity Era
1000s of computers luser

How chips are made

A computer chip's journey begins with research

Engineers and scientists from companies and academia develop revolutionary processing and packaging technologies

Foundries, Intel and IDM 2.0

Typically, semiconductor manufacturers are either:

- Integrated device manufacturers (IDM) that design, build and sell their own chips; or
- Foundries that build chips for "fabless" customers that design, brand and sell them

Intel is different. Its IDM 2.0 strategy combines:

- Intel's internal factory network to build most of its products
- The use of external foundries for flexibility, scale and cost
- Intel Foundry Services, a new group dedicated to manufacturing for customers

IDM 2.0

Moore's Law and what it means

Moore's Law was an observation of increasing economic efficiency

In 1965, Gordon Moore made what he later called "a wild extrapolation of very little data" that the number of components per integrated circuit would keep doubling annually (revised later to biannually).

Intel co-founder Gordon Moore

Why are process nodes important?

The result of each new process node can include:

2

More power-efficient and quicker operation, and/or

3

More dynamic range
(efficient at idle, faster at full throttle)

The package

Packaging: protect, connect and re-architect

This Intel processor shows the silicon die at center, which would be attached to the substrate (left) and covered with a heatspreader (right). The combined enclosure is called the "package." It connects micronsized features on the die to millimeter-sized features on a computer's motherboard, protects the die from contaminants, cools it, powers it, and increasingly, allows multiple die to be combined in novel ways.

Packaging: protect, connect and re-architect

New packaging technologies allow the combination of myriad die into "systems in packages," enabling more design and performance flexibility - leading to entirely new kinds of chips, like the powerful Ponte Vecchio GPU.

Intel is a world leader in advanced packaging development and manufacturing.

Advanced packaging enables new era of chip design

Process versus microarchitecture

Think of a chip as a multistory urban building

Microarchitectures are blueprints; they convey what to build

- A microarchitecture represents a specific design, a single, unique building. An architecture comprises a family of buildings based on a unifying theme.
- Example: Willow Cove and Goldmont are CPU microarchitectures; both use Intel Architecture.

Process technologies are construction techniques

- How you take raw materials and create a building.
- Each new node is a refinement in process technology - new and better ways to build new and better buildings.

Major processor architectures

What Intel defines as XPUs

CPU

Central processing unit
(the brain of the computer)
What do they do:
Run the computer and all its
programs
Major suppliers:
Intel, AMD, ARM
(Apple, Qualcomm, Samsung)

GPU

Graphics processing unit

What do they do:

Make images; accelerate highly parallel operations

Major suppliers: Intel, AMD, Nvidia, ARM, Imagination

FPGA

Field-programmable gate array; software-configurable circuits

What do they do:
Acceleration, communications, circuit design, applications that change often

Major suppliers:
Intel, Xilinx

ASIC

Application-specific integrated circuit

What do they do:
Do one thing, very quickly:
deep learning, encryption,
network processing
Major suppliers:
Many and varied (including Intel)

Modern chips require a lot of software

"For every order of magnitude performance potential from new hardware architecture, there is often more than 2 orders of magnitude unlocked by software." - Raja Koduri, Accelerated Computing Systems and Graphics (AXG) Group at Intel

Services \& solutions

Applications

Software supplied by Intel for developers and customers

The high cost of manufacturing drives industry consolidation

Staying on the leading edge became unaffordable for all but the three largest companies

Semiconductors take a global path to production

Intel partners with thousands of innovative companies around the world to bring semiconductors to market, from raw materials to logistics and construction, including:

Front-end equipmen		Front-end materials		Back end			Design		Other partners	
Process equipment	Process control	Materials	Silicon	Assembly equipment	Test equipment	Substrates	EDA/IP	Contract workers	Memory	Factory construction

Intel's history in 4 fast eras

1985 1995

1996-
2014

2015-

The definitive Silicon Valley startup

1968: Intel founded with \$3M
1969: First product, first customer
1971: Microprocessor invented
1976: Microcontroller invented
1981: IBM puts Intel 8088 in first PC
1983: Intel reaches \$1B revenue
1984: First CHMOS DRAM, up to 64K

A logical exit from memory

1985: Intel exits DRAM, debuts 386 processor

1988: Intel enters flash memory
1991: Intel Inside logos appear worldwide; Intel breaks supercomputing record

1992: Intel becomes world's largest semiconductor company

1993: Pentium processor
1995: Pentium Pro launched for servers

One billion computers

1997: Iconic bunny people debut in ads
1998: Intel Celeron debuts
2000: Pentium 4; revenue surpasses $\$ 30 B$ 2001: First Xeon chips for servers
2002: Hyperthreading introduced
2003: Intel Centrino makes Wi-Fi common; Intel ships billionth processor

2005: Multicore processors
2008: Intel Atom processor
2011: First 3-D transistor; Thunderbolt introduced

2013: Intel NUC mini PCs debut

XPUs and a new era of data

2015: \$300M diversity and inclusion initiative; Intel acquires Altera

2016: Silicon photonics ship
2017: Intel acquires Mobileye; first product with EMIB packaging ships
2018: Employees contribute 1.5M volunteer hours for 50th anniversary; revenue crosses \$70B

2020: Xe discrete graphics; first 3-D stacked processor

2021: Intel introduces IDM 2.0

Intel invests in future technology and factories to build it

Intel invests in research and development primarily for future process technologies and the PC and datacentric businesses, while also making capital investments in manufacturing and wafer capacity.

R\&D and capital investments
(in billions)

Intel owns nearly 70,000 active patents worldwide

Intel patents by region

Patents by topic

Intel invents across an unmatched span of technologies

Intel's global manufacturing footprint

Glossary

Assembly/test: The second half of chip manufacturing, where bare silicon die are encased in a protective package and undergo final inspection; also refers to factories dedicated to this function.

Chip: A tiny, thin square or rectangle that contains integrated electronic circuitry. A chip contains one or more die, which are built in batches on wafers of silicon.

Die: A single integrated circuit cut from a wafer after fabrication.
Fab: A factory that performs the first half of silicon chip manufacturing (fabrication), where bare silicon wafers undergo weeks of processing to become integrated circuits.

Foundry: A silicon fabrication business (TSMC, Global Foundries) that offers manufacturing as a service to outside chip design companies, which are referred to as "fabless semiconductor companies" (AMD, Nvidia); contrasts with an IDM (Intel, Samsung).

Integrated circuit: A semiconductor device that includes many transistors and electrical circuits, designed to perform one or many functions.

Integrated device manufacturer or IDM: Company that both designs and manufactures silicon chips, such as Intel and Samsung.

Intellectual property or IP: A functional unit of an integrated circuit, such as CPU cores, graphics and media, memory and AI.

Package: A protective enclosure around one or many silicon die that includes connectors to the computer.

Semiconductor: A material (such as silicon) that can be altered to conduct electrical current or block its passage; common shorthand for computer chips and the industry.

Transistor: A type of switch that controls the flow of electricity. A chip can contain millions or billions of transistors.

Wafer: A round slice of purified silicon less than 1 mm thick, up to 12 inches or 300 mm in diameter, upon which integrated circuits are implanted and etched and later sliced into individual die.

inte.

All product and service plans and roadmaps are subject to change without notice. Any forecasts of goods and services needed for Intel's operations are provided for discussion purposes only. Intel will have no liability to make any purchase in connection with forecasts published in this document. Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy. Citations available upon request.

Statements in this document that refer to future plans or expectations are forward-looking statements. These statements are based on current expectations and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in such statements. For more information on the factors that could cause actual results to differ materially, see our most recent earnings release and SEC filings at www.intc.com.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others. This document contains information on products and/or processes in development.

