
Authors
Petr Kaštovský

CEO, Netcope Technologies

Chuck Tato
Director,

Communications Business Division
Intel® Corporation

Segment Routing P4 PoC

Building a PoC of Segment Routing
at 100G Using FPGA Smart NIC and
P4 Language

Introduction
Service Function Chaining (SFC) is a process of passing network traffic among
individual typically virtualized network functions in network function virtualization
(NFV) and software-defined network (SDN) infrastructures. The typical SFC can
be a series of IDS/IPS, firewalls, wide area network (WAN) optimizers, and load
balancers that the traffic needs to go through on its way from client to server and
vice versa [1],[2].

One approach to support SFC in NFV infrastructure is to use segment routing,
in particular, the IPv6-based segment routing (SRv6) [3]. This technology is
now becoming very attractive and deployed in large networks of the future as
demonstrated by SoftBank’s recent joint announcement with Cisco [4] as well as
other deployments also announced by Cisco [5].

During the P4.org workshop in May 2017, teams from Bell Canada, Cisco Systems,
and Barefoot Networks presented the concept of The Extensible Network -
Evolution in Protocol and Data Plane Agility and explained the benefits of SRv6 for
SFC [6].

In our proof of concept, we focused on demonstrating the ability to quickly
develop SRv6 acceleration using an Intel® FPGA-based hardware accelerator and
P4 programming language [7]. Similarly to accelerating SRv6, other applications
can be accelerated using this approach. Good candidates being processing nodes
of Vector Packet Processing (VPP) [8].

The theory of segment routing is explained in Figure 1.

Table of Contents

Introduction . . 1

P4 Language - Increased
Productivity and Abstraction. 2

FPGA-based smart NIC as a
target. . 2

Executing the PoC. 3

References. . 4

Version Traffic Class Flow Label

IP
v6 Payload Length Next = 43 Hop Limit

Source Address = A::

Destination Address = C::

SR
H

Next Header Len = 6 Type = 4 SL = 1

First = 2 Flags Tag

Segment List [0] = D::

Segment List [1] = C::

Segment List [2] = B::

TLVs

Payload

Figure 1. 	 IPv6 and Segment Routing Header. Source [6].

To perform segment routing, SRv6 router goes through the Segment List in
Segment Routing Header (SRH) and uses field Segments Left (field SL=1 in Figure 1)
as an index of the active segment that is copied over to Destination Address of IPv6
header. We decided to accelerate this data plane operations to demonstrate the
productivity and flexibility of P4 language combined with FPGAs.

white paper

2

White Paper | Building a PoC of Segment Routing at 100G Using FPGA Smart NIC and P4 Language

P4 Language - Increased Productivity and
Abstraction
P4 is a protocol and target independent language that allows
for field upgradability of network devices. Furthermore, it
significantly improves productivity compared to standard
hardware description languages (HDL) that are used to write
code for FPGAs. Unlike HDL languages, P4 is domain specific
and focused on networking and that makes it an optimal
platform for the acceleration of virtual network functions.

Implementation of the SRv6 PoC is quite straightforward.
Example 1 shows the P4 code describing packet headers and
protocol parser.

FPGA-Based Smart NIC as a Target
P4, being a target independent language, makes it easy for
the designer to select Intel FPGAs as the target architecture.
Intel FPGAs are a preferred hardware platform option for its
efficiency when compared to CPUs and NPUs .

Using a P4 language as a programming language waives that
barriers that are traditionally associated with programming
FPGAs and brings the benefits of FPGAs into the networking
domain.

Netcope projects:

•	 Netcope P4 - Netcope P4 is an FPGA-vendor
independent project by Netcope Technologies providing
integration into different flavors of FPGA-based smart
network interface cards (NICs) offering up to 2X 100GbE
network capacity to fully deliver on the improved
efficiency over NPUs.†

https://www.netcope.com/en/products/netcopep4

Once the packets are parsed and appropriate packet header
fields are extracted, it is important to define Match + Action
tables that will perform the rewrite of destination IPv6
address by a Segment List item indexed by the Segments Left
field and decrement of the Segments Left field.

headers.p4 parser.p4

header_type ethernet_t {
 fields {
 dstAddr : 48;
 srcAddr : 48;
 etherType : 16;
 }
}

header_type ipv6_t {
 fields {
 ver : 4;
 trafClass : 8;
 flowLab : 20;
 payLen : 16;
 nextHead : 8;
 hopLim : 8;
 srcAddr : 128;
 dstAddr : 128;
 }
 }

//IPv6, extension header and
segments
header_type ipv6_ext_t {
 fields {
 nextHead : 8;
 pad0 : 16;
 next_seg : 8;
 pad1 : 32;
 }
 length: next_seg * 16;
}

header_type ipv6_seg_t {
 fields {
 val : 128;
 }
}

// Metadata
header_type seg_meta_t {
 fields {
 segVal : 128;
 nextSeg : 8;
 }
}

// General constants
#define IPV6_EXT_DEPTH	 1

// Protocol numbers
#define PROTOCOL_IPV6 	
0x86dd
#define PROTOCOL_V6EXT	
0x2B

// Instances of headers
// Outer header stack
metadata seg_meta_t lastSeg;
header ethernet_t	 ethernet_0;
header ipv6_t 		
ipv6;
header ipv6_ext_t 	 ipv6_ext;
header ipv6_seg_t ipv6_seg;

// Parse graph
// Start
parser start {
 return parse_ethernet;
}

// Parse graph - Outer layers
// Outer ethernet_0
parser parse_ethernet {
 extract(ethernet_0);
 return select(latest.etherType) {
 PROTOCOL_IPV6 	 :
parse_ipv6;
 default			
: ingress;
 }
}

parser parse_ipv6 {
 extract(ipv6);
 return select(latest.nextHead)
{
 PROTOCOL_V6EXT : parse_
ext;
 default : ingress;
 }
}

parser parse_ext {
 extract(ipv6_ext);
 return parse_seg;
}

parser parse_seg {
 extract(ipv6_seg);
 set_metadata(lastSeg.
segVal,latest.val);
 return ingress;
}

tables.p4 main.p4

// Actions
action rewrite() {
 modify_field(ipv6.
dstAddr,lastSeg.segVal);
 add_to_field(ipv6_ext.
next_seg, -1);
}

// Tables
// Table that does nothing
table tab_rewrite {
 actions {
 rewrite;
 }
}

#include "headers.p4"
#include "parser.p4"
#include "tables.p4"

control ingress {
 if(valid(ipv6_ext)) {
 apply(tab_rewrite);
 }
}

Example 1. 	Headers and Parser Description in P4

Example 2. 	SRv6 Processing Code in P4

Figure 2. 	 Netcope P4 Improves FPGA Flexibility

CPU NPU FPGA ASIC

Flexibility Performance

3

Figure 3. 	Netcope P4 Cloud GUI

Figure 5. 	Throughput Achieved with the Real Hardware

Figure 4. 	Packet Content Before and After SRv6 Processing

White Paper | Building a PoC of Segment Routing at 100G Using FPGA Smart NIC and P4 Language

Executing the PoC
To perform the PoC we have used the online Netcope P4
Cloud to perform the synthesis of P4 code. The whole
compilation process takes several steps but all of them
are simplified for the user to only upload P4 code at the
beginning and get FPGA bitstream at the end.

Step 1:

After uploading the code, an email confirmation will be
sent confirming the task being queued for compilation and
synthesis. The time required for compilation and synthesis
is around two and a half hours for this PoC. Another email
will be sent confirming that the task has finished. Also, it is
possible to check the status of the task on the portal shown
in Figure 3.

The code is functionally correct. Using the Intel Arria® 10
FPGA on the pre-production version of the Intel FPGA
Programmable Acceleration Card N3000 with 8x10GE
interfaces, we were able to achieve from 78 to 80 Gbps of
port to port throughput without any specific performance
optimizations or tunings. See Figure 5.

It was a very interesting exercise where most of the time to
get the PoC working was figuring out the problem on the
algorithmic side. In other words, what data transformation
should be done. Once this was clear, writing the code was
a matter of day and getting the bitstream including test in
hardware was a matter of 3 hours. This is a true revolution for
Intel FPGA-based NIC programming.Step 2:

Test the generated FPGA bitstream in the real hardware
with the Ethernet cable connected in loopback. All that is
needed is to load the bitstream into the FPGA, configure
P4 Match&Action tables, start packet capture, and send
test traffic from packet capture (PCAP) files. Figure 4 is an
example of the specific packet before and after PoC SRv6
pipeline, which was dissected by Wireshark.

Segment Routing Processing in Intel® Arria® 10 FPGA
Frame Rate Measured (Mfps) Frame Rate Theoretical (Mfps)

125

100

75

50

25

0
250 500 750 1000 1250 1500

4

  Please Recycle

† 		Tests measure performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

© Intel Corporation. All rights reserved. Intel, the Intel logo, the Intel Inside mark and logo, Altera, Arria and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the
U.S. and/or other countries. Intel reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the applica-
tion or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications
before relying on any published information and before placing orders for products or services. Other marks and brands may be claimed as the property of others.

WP-01291-2.0

References
[1] 	 Ahmed AbdelSalam, Francois Clad, Clarence Filsfils, Stefano Salsano, Giuseppe Siracusano, Luca Veltri, “Implementation

of Virtual Network Function Chaining through Segment Routing in a Linux-based NFV Infrastructure”, Extended version of
the conference paper [1] - v04 - April 2017. [Online].
Available: https://arxiv.org/pdf/1702.05157.pdf

[2] 	 Open Networking Foundation, “L4-L7 Service Function Chaining Solution Architecture”, Version 1.0, 14 June 2015, ONF
TS-027. [Online].
Available: https://www.opennetworking.org/wp-content/uploads/2014/10/L4-L7_Service_Function_Chaining_Solution_
Architecture.pdf

[3] 	 D. Lebrun, S. Previdi, C. Filsfils, and O. Bonaventure, “Design and Implementation of IPv6 Segment Routing,” Tech. Rep.,
2016. [Online].
Available: http://dial.uclouvain.be/pr/boreal/object/boreal:174810

[4] 	 Sara Cicero, Carter Cromwell, Emily Hunt, “SoftBank Teams with Cisco to Optimize Network Operations in its Next-
Generation Mobile IP Core Network”. newsroom.cisco.com website, 2017. [Online].
Available: https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1871147

[5] 	 Jonathan Davidson, “Simplifying Networks through Segment Routing”, blogs.cisco.com website, 2017. [Online].
Available: https://blogs.cisco.com/news/simplifying-networks-through-segment-routing

[6] 	 Daniel Bernier, Milad Sharif, Clarence Filsfils, “The Extensible Network - Evolution in Protocol and Data Plane Agility”, P4
Workshop 2017. [Online].
Available: http://www.segment-routing.net/images/20170517-bell-barefoot-cisco-P4%20Workshop%202017%20v2.pdf

[7] 	 P4.org website, 2017. [Online].
Available: https://p4.org/

[8] 	 FD.io Developer Wiki, “VPP, What is VPP?”, last modified May 2017. [Online].
Available: https://wiki.fd.io/view/VPP/What_is_VPP%3F

White Paper | Building a PoC of Segment Routing at 100G Using FPGA Smart NIC and P4 Language

https://www.opennetworking.org/wp-content/uploads/2014/10/L4-L7_Service_Function_Chaining_Solution_Architecture.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/L4-L7_Service_Function_Chaining_Solution_Architecture.pdf

