
Abstract
With the rapid decrease in gene sequencing costs due to the emergence of second-
generation sequencing equipment, the availability of genome sequence data is
increasing dramatically. The ability to correlate the variations among genomes
is enabling advances in a wide range of medical research and personalized care.
Because each human genome comprises more than three billion base pairs, whole
genomic sequencing requires significant processing power, storage capacity, and
network bandwidth. In particular, variant calling is extremely computationally
intensive. The Genome Analysis Toolkit (GATK) is a software package developed
at the Broad Institute to analyze high-throughput sequencing data. This paper
describes the acceleration of the GATK’s HaplotypeCaller algorithm using Intel’s
field programmable gate array (FPGA) devices, programmed using the Intel® FPGA
SDK for OpenCL™ technology.

Keywords: Genome, Genomics, Haplotype, PairHMM, OpenCL, FPGA, Broad
Institute, Intel® Arria® 10 FPGA, heterogeneous computing

1 Introduction
Genomic variant discovery may appear to be a straightforward problem that
consists of mapping reads to a reference sequence and at every position, counting
the mismatches and construing the genotype variants. However, multiple sources
of error in the sequence data make this process much more complex than it at first
appears. These potential errors include amplification biases that may occur during
wet lab preparation, machine errors during library sequencing, and software
errors and mapping artifacts during read alignment. “A good variant calling
workflow must involve data preparation methods that correct or compensate for
these various error modes.” [1] These diverse errors make variant discovery a
computationally intensive undertaking. Modern variant caller algorithms can take
up to several days of computation time using standard microprocessors.

2 Heterogeneous Computing and the OpenCL™
Computing Language
In the field of high-performance computing, heterogeneous computing systems
are emerging to solve a wide range of challenges. A standard CPU with an attached
accelerator device such as a GPU or field programmable gate array (FPGA) can
be used to accelerate a wide range of functions including data search, image
processing, and financial or seismic simulations. With the emergence of these
heterogeneous systems, programming standards have emerged to allow easier
adaptation (and acceleration) of algorithms from standard systems.

Authors
Chris Rauer (Software Engineer),

George S. Powley (Software Engineer),
Mir Ahsan (Software Engineer),

and Nicholas Finamore, Jr. (Sales &
Marketing Associate)

Accelerating Genomics Research
with OpenCL™ and FPGAs

Table of Contents
Abstract . . 1
1 Introduction. 1
2 Heterogeneous Computing and
the OpenCL™ Computing
Language. . 1
	 2.1 FPGA Technology. 2
	 2.2 Programming with FPGAs . . . 2
	 2.3 The Intel® FPGA SDK for
	 OpenCL Technology. 2
	 2.4 FPGA Device Targets. 3
3 Genome Analysis. 3
	 3.1 Genome Variant Discovery. . . 3
	 3.2 The Genome Analysis Tool
	 Kit (GATK). . 3
	 3.3 PairHMM Algorithm
	 Overview . . 3
	 3.4 PairHMM FPGA
	 Implementation. 4
4 Experiment. . 4
	 4.1 Choosing an Optimal
	 Compute Grid Size. 4
	 4.2 Concatenating Reads and
	 Haplotypes 4
5 Results. . 5
	 5.1 FPGA Utilization 5
	 5.2 Performance 5
6 GATK Integration. 6
7 Conclusion. . 6
8 Acknowledgments. 6
9 References. . 6

white paper

https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html

2

White Paper | Accelerating Genomics Research with OpenCL™ and FPGAs

OpenCL is a framework for writing programs that execute
across heterogeneous platforms consisting of CPUs, GPUs,
digital signal processors (DSPs), FPGAs, and other multicore
processors. It includes a language based on standard ANSI
C99 for programming these devices, and APIs to control the
platform and execute programs on the compute devices. The
OpenCL standard is managed by the Khronos Group, a non-
profit organization. [2] The portability of programs among
accelerator devices from different vendors is a significant
advantage of OpenCL. Several vendors, including Intel, AMD,
and NVIDIA, provide OpenCL-conformant compilers. In order
to claim conformance to the OpenCL standard, the vendor’s
compiler must accurately compile and execute a suite of
more than 8,500 OpenCL programs. [3]

2.1 FPGA Technology
FPGAs are reconfigurable integrated circuits that consist
of programmable routing networks linking together logic
array blocks, embedded memory blocks, and DSP blocks, in
contrast to the fixed data paths and topologies found in CPUs
and GPUs that process program instructions. FPGA resources
may be configured and linked together to create custom
instruction pipelines through which data is processed.
“Dynamically creating custom pipelines to process each
target application increases throughput, performance, and
power efficiency by reducing the amount of superfluous
functional units in silicon.” [4] The FPGA architecture can be
used to solve certain types of computing problems efficiently.

2.2 Programming with FPGAs
Hardware developers have traditionally designed and
verified digital circuits on FPGAs at the register-transfer
level (RTL) using hardware description languages such as
Verilog and VHDL. While these traditional methods are
effective for ensuring efficient use of the devices, they are
impractical for the implementation of complex algorithms
such as gene sequencing. In early 2012, Altera Corporation
introduced the Altera SDK for OpenCL, which allows use
of the OpenCL programming language to program Intel’s
FPGAs as computing accelerator devices. The Altera SDK was
rebranded as the Intel® FPGA SDK for OpenCL technology
following Intel’s acquisition of Altera in 2015. In late 2014,
Xilinx Corporation, another leading FPGA vendor, announced
development of a compiler for OpenCL as well.

2.3 The Intel® FPGA SDK for OpenCL Technology
The Intel FPGA SDK for OpenCL technology has been used
for a wide array of algorithms in a variety of computing
fields. This SDK uses the same programming model as
other vendors’ compilers. Figure 1 illustrates the SDK’s
programming flow. The system requires an FPGA-based card
designed for the OpenCL SDK, available from a variety of
vendors. No additional RTL-level programming is required;
the FPGA is programmed entirely using OpenCL.

Figure 1. Intel® FPGA SDK for OpenCL™ technology usage model.

Host Code

Host

main() {
 read_data(…);
 manipulate(…);
 clEnqueueWriteBuffer(…);
 clEnqueueNDRange(...,sum,...);
 clEnqueueReadBuffer(…);
 display_result(…);
}

OpenCL™ Accelerator Code

Accelerator

Verilog*

__kernel void sum
 (__global float *a,
 __global float *b,
 __global float *y)
{
 int gid = get_global_id(0);
 y[gid] = a[gid] + b[gid];
}

EXE

Altera Offline
Compiler

Standard gcc*
Complier

AOCX

3

White Paper | Accelerating Genomics Research with OpenCL™ and FPGAs

The OpenCL program consists of host code that is intended
to run on a standard CPU, and the kernel code, which is
intended to run on the accelerator (in this case, the FPGA).
Using the standard IDE and GCC* compiler, a programmer
writes and compiles host code but uses the OpenCL API
to communicate with the OpenCL kernel. In a separate .cl
file, the programmer writes with OpenCL C following the
appropriate optimization guidelines for the FPGA. The
OpenCL kernel file is compiled using the Intel FPGA offline
compiler and actually runs Quartus* in the background to
produce the .aocx file. At runtime, the Intel FPGA offline
compiled executable is downloaded to the FPGA. All of the
tools and processes typically used by FPGA designers are
abstracted away, because this entire process occurs in the
familiar software programmer’s environment. [5]

2.4 FPGA Device Targets
For the purposes of this experiment, the HaplotypeCaller
code is partitioned to run on both the host and the FPGA, to
optimize performance. The OpenCL complier was targeted
to build the code for an Intel® Arria® 10 FPGA. The Intel Arria
10 FPGA is part of Intel’s high-end family of devices and is
built using 20nm silicon process technology. This relatively
new process technology enables the Intel® Arria® 10 device
to have more logic elements, DSPs, and memory, as well as
run at higher frequencies than if it were manufactured using
older technologies. It has advanced, hardened floating-
point elements that make floating-point functions more
efficient than those implemented using standard logic. These
features make it possible to fit more computational blocks,
optimizing performance and performance per watt for the
HaplotypeCaller algorithm.

3 Genome Analysis
3.1 Genome Variant Discovery
The process of identifying differences between DNA
sequences is called variant discovery. The ability to identify
variations in DNA has become essential for medical research
and personalized medical care. Research projects that
seek to compare hundreds or thousands of sequences are
often stifled by the amount of compute time and resources
required. Therefore, many in the medical and high-tech
communities are pursuing acceleration of variant discovery.

Using a robust calling algorithm that not only compares
sequences but also leverages meta-information such as
base qualities scores variant discovery can be performed on
the appropriately processed data. To minimize errors, it is
desirable to include as many potential variants as possible.
“Once a highly-sensitive call set has been generated,
appropriate filters can be applied to achieve the desired
balance between sensitivity and specificity.” [6]

3.2 The Genome Analysis Tool Kit (GATK)
The GATK is a software package developed at the Broad
Institute to analyze high-throughput sequencing data. It
offers a wide variety of tools, with a primary focus on variant
discovery and genotyping as well as a strong emphasis on
data-quality assurance.

The HaplotypeCaller function within the GATK is the variant
discovery algorithm. The main algorithm to compare
sequences is called the PairHMM. It is used to call SNPs and

indels simultaneously via local re-assembly of haplotypes in
an active region. The basic operation of the HaplotypeCaller
defines ActiveRegions, determines haplotypes by reassembly
of the ActiveRegion, determines likelihoods of the haplotypes
given the read data, and assigns sample genotypes. [6]

By using significant variation evidence, the areas to be
further analyzed are identified as the ActiveRegions. The
program then creates a De Bruijn-like graph to reassemble
the ActiveRegions and detect the possible haplotypes, which
are then realigned using the Smith-Waterman algorithm.
Using the PairHMM algorithm, the ActiveRegions are pairwise
aligned against each haplotype to produce a matrix of
likelihoods of haplotypes based on the read data. This is
then relegated to create the likelihoods of alleles for each
potential variant site. [6]

3.3 PairHMM Algorithm Overview
The process of comparing two gene sequences is not as
simple as comparing two regular strings, because each
sequence may contain insertions, deletions, and mutations.
The hidden Markov models in the PairHMM algorithm are
used to calculate the probability of a match with these
possible changes. Because the exact alignment is not known,
a comparison must be performed with each alignment.

The input to the algorithm requires two gene sequences. The
first is the read sequence, which contains the gene string
and some quality factors based on how it was read in. The
second sequence is the haplotype sequence, which is simply
a gene string without any additional data. Each sequence is
compared with the PairHMM hidden Markov model equation,
and the result is passed to the next diagonal. The next
diagonal compares the same two sequences again but with a
different alignment. The different alignment is just a shift in
sequence by one for each diagonal. Figure 2 shows two tiny
sequences and the iteration of diagonals with the shifting of
the alignment.

 read: CAT
 haplotype: ATG

CAT
G
CAT
TG
CAT
ATG
CAT
 AT
CAT
 A

D=0

D=1

D=2

D=3

D=4

Read length 3
Haplotype length 3
Number of diagonals = 3 + 3 - 1 = 5
Number of PairHMM calculations = 5 x 3 = 15

Figure 2. The process of comparing each alignment of two
small sequences.

4

White Paper | Accelerating Genomics Research with OpenCL™ and FPGAs

The hidden Markov comparison result is a single probability
score, but the floating-point math used is computationally
expensive. If the length of each sequence is n, the
computation requirement is O(n^2). Also, each calculation
depends on previous calculations from the previous row
and diagonal. Figure 3 shows these dependencies. The
probability at the end of each diagonal is added up to give
an overall score for all the alignments of each sequence. This
score determines how well the two sequences match with
all alignments. Each box in Figure 3 shows how the result of
the PairHMM calculation for two sequence characters is used
in subsequent calculations. This type of structure is called a
systolic array and readily lends itself to being mapped to an
FPGA fabric.

4 Experiment
The HaplotypeCaller Algorithm within the GATK was initially
written in Java*. The Broad Institute then converted the
algorithm to C++. For our experiment, we ported the PairHMM
algorithm that was originally written by the Broad Institute
[6] from C++ to OpenCL. The fact that OpenCL is a C-based
language made it fairly straightforward to port the algorithm.
Also, the code was well optimized, and constant values that
were needed were already precalculated. The code was
tested for functional correctness with the emulator that is
part of the Intel FPGA SDK for OpenCL technology, and we
used the test cases that came with the Broad Institute’s C++
source code.

The code was then targeted to an Intel Arria 10 device on a
reference development platform. The compiler produced an
optimized .aocx file, which was loaded into the Intel Arria 10
device. Measurements of runtime performance were taken.

4.1 Choosing an Optimal Compute Grid Size
The FPGA accelerates this algorithm effectively because the
algorithm can be mapped to a 2D systolic array. In Figure 3,
the top computations feed the bottom computations, and the
results trickle through the compute units in the grid. Sizing
this grid required a bit of experimentation. If the compute
grid is too wide, the m20k blocks will increase, because the
accesses will be wider, but the depth will be shallower. If the
depth needed is less than the physical depth of the m20k
block, the block will be underutilized. There are several
variables that must be loaded from memory for each column,
greatly amplifying this effect.

If the depth of the compute grid is too great, too many
haplotype characters will have to be read from DDR
memory simultaneously. This will exhaust the DDR memory
bandwidth. Also, adders are needed at the end of row. As a
result, increasing the depth will increase the number of these
adders linearly.

When the OpenCL compiler builds the functions for an Intel
Arria 10 FPGA, it is able to fit 208 PairHMM processing elements
in an 8x26 grid. This is completely pipelined. Figure 4 shows
a visual representation of a smaller 4x4 compute grid.
Due to the hardened floating-point capability, along with
additional logic, memory, and switching fabric within the
more advanced device, the Intel Arria 10 FPGA can fit more
processing elements than earlier devices.

4.2 Concatenating Reads and Haplotypes
In addition to optimizing the grid size, the input reads and
haplotypes were concatenated to provide the kernel with
a constant flow of inputs to minimize the latency of data
transfer and global and local memory access. Additional logic
was added to the kernel to ensure correct functionality for
each read and haplotype pair. The stream of output results
was then reassembled in the host to match the expected
outcome of the application.

r0d0 r1d0 r2d0 …

r0d1 r1d1 r2d1 …

r0d2 r1d2 r2d2 …

… … … …

Figure 3. The dependencies among calculations in a Hidden
Markov comparison.

3.4 PairHMM FPGA Implementation
This algorithm can be substantially optimized on a CPU
using vector instructions. If the sequences are small, the
comparison can be done entirely using the CPU’s internal
Level 1 cache. However, with larger sequences, the external
memory bandwidth of the CPU may become a performance
limiter, particularly because each calculation must be broken
up into separate instructions. These types of algorithms
also work well on FPGAs. An FPGA typically has a lower
clock speed than a CPU but can take advantage of pipelined
parallelism to do hundreds of complex calculations in
parallel, running one after another each cycle inside the
pipeline. Intel’s FPGA SDK for OpenCL compiler analyzes
the code and builds these pipelines automatically. The lower
clock speed of the FPGA typically enables applications to
consume far less power.

5

White Paper | Accelerating Genomics Research with OpenCL™ and FPGAs

5 Results
5.1 FPGA Utilization
Table 1 shows FPGA resource utilization for the Intel Arria 10
device. As expected, the Intel Arria 10 FPGA was able to fit
more computation blocks for the PairHMM algorithm because
of the hardened floating-point DSP. The DSP utilization was
almost 100 percent in the Intel Arria 10 FPGA because of this
factor. Maximum frequency (fmax) for the Intel Arria 10 device
was 232 MHz.

5.2 Performance
Cell updates per second (CUPS) is a performance measure
commonly used in computational biology that represents
the number of matrix cells updated each second. [7] For
PairHMM, the number of cells in the matrix is the read
length multiplied by the haplotype length. Therefore, the
performance for one PairHMM calculation is as follows:

 (read length × haplotype length) ÷ PairHMM time

Here, PairHMM time includes the time to prepare the data on
the CPU, transfer the data to the FPGA, calculate the result on
the FPGA, and then transfer the result back to the CPU. In this
paper, the results are presented using Giga-CUPS (GCUPS) as
the unit.

The functionality and performance measurement of the
PairHMM algorithm was performed using data captured while
running the GATK HaplotypeCaller application. PairHMM
performance on similar whole-genome sequences was tested
on multiple platforms. In total, 1,584,272,000 batches were
used for computation on the platforms, as outlined in Table 2.
The IBM and Xilinx results were presented by IBM Research in
2016. [8] The NVIDIA Tesla* K40 results presented in the third
row were published by researchers at the Delft University of
Technology. [9]

FIELD PROGRAMMABLE
GATE ARRAY (FPGA)

PAIRHMM COMPUTE
BLOCKS FMAX (MHZ) LOGIC UTILIZATION

DIGITAL SIGNAL
PROCESSOR
UTILIZATION

Intel® Arria® 10 GX FPGA 208 232 236k/427k (55%) 1508/1518 (99%)

IMPLEMENTATION PEAK PERFORMANCE
[GIGA-CUPS (GCUPS)]

AVERAGE PERFORMANCE
(GCUPS)

One core [Intel® Advanced Vector Extensions (Intel® AVX)
technology] on the Intel® Xeon® processor E5 v4 product familya 0.699 0.676

44 cores (Intel AVX technology) on the Intel Xeon processor E5
v4 product familya 22.0 21.2

NVIDIA Tesla* K40 [9] 12.79 N/A

Power8* eight-core 8284-22A [8] 0.809 N/A

Xilinx Kintex* Ultra Scale XCKU060 [8] 1.746 N/A

Intel® FPGA SDK for OpenCL™ technology on Intel® Arria® 10 GX
FPGA development boardb 44.43 33.8

Table 1. FPGA compilation results for the PairHMM algorithm.

Table 2. Performance results comparing various platforms.

r-1d-2

prev reg
r0d-2 r1d-2 r2d-2 r3d-2 r3d-2

next reg

r-1d-1

prev reg

r-1d0

prev reg
r0d0

PE
r1d0

PE
r2d0

PE
r3d0

PE

r0d1

PE
r1d1

PE
r2d1

PE
r3d1

PE

r0d2

PE
r1d2

PE
r2d2

PE
r3d2

PE

r0d3

PE
r1d3

PE
r2d3

PE
r3d3

PE

r-1d1

prev reg

r-1d2

prev reg

r0d-1 r1d-1 r2d-1 r3d-1 r3d-1

next reg

r3d0

next reg

prev
result

r3d1

next reg

r3d2

next reg

input
channel

output
channel

result
channel

+

+

+

+

Figure 4. Visual representation of OpenCL™ 4x4 PairHMM
algorithm implementation.

a �System configuration: Intel® Xeon® processor E5-2699 v4 @ 2.20 GHz, 2 sockets/22 cores per socket, 256 GB RAM, 2 TB Intel® SSD Data
Center P3700 Series.

b �System configuration (for last row of Table 2): Intel® Xeon® processor E5-2697 v2 @ 2.70 GHz, 2 sockets/12 cores per socket, 128 GB RAM,
2 TB Seagate HDD ST2000DM001*.

White Paper | Accelerating Genomics Research with OpenCL™ and FPGAs

6 GATK Integration
The PairHMM FPGA accelerator has been integrated into
the GATK through the Genomics Kernel Library (GKL)
library. The GKL provides the GATK with a simple API, which
is common for Intel® Advanced Vector Extensions (Intel®
AVX) technology, OpenMP* with Intel AVX technology, and
FPGA implementations of PairHMM. The GATK includes
options to select a specific PairHMM implementation,
as well as the capability to select the fastest available
PairHMM implementation on the platform. By using the GKL
approach, FPGA-accelerated PairHMM was added to the
HaplotypeCaller and MuTect2 tools in GATK3 and GATK4 with
few coding changes in the GATK.

7 Conclusion
The Intel FPGA SDK for OpenCL technology enabled simple,
effective implementation and testing of the PairHMM
algorithm for the GATK from the Broad Institute. The Altera
FPGA shows significant performance acceleration relative to
other technologies. Comparing the peak performance with
IBM POWER8* and Xilinx platforms, the Intel Arria 10 device
recorded speeds of up of 55x and 25x, respectively. Upon
integration with the GATK Best Practices pipeline, the overall
pipeline speed-up was 1.2x compared to the Intel AVX
technology implementation. Possible future work includes
the following:

• �Incorporate the accelerated algorithms into the complete
GATK.

• �Implement compression algorithms in the FPGA to enable
more effective storage and transportation of genome data
along with acceleration of analysis engines such as the GATK.

• �Port to the recently announced Intel® Stratix® 10 FPGA to
potentially achieve further performance scaling.

Further optimization of the OpenCL code could be done as
well. For instance, in the current design, the result adder chain
in Figure 4 is not fully utilized every cycle. An improvement
would be to mux one of the adders from the HMM calculation
so that the hardware could be shared. This type of
optimization, called resource folding, would allow chip area to
be reduced so that freed DSP resources could be used to add
more computation units, increasing performance.

8 Acknowledgments
The authors wish to thank Andrew Ling, the manager of the
OpenCL compiler team in Toronto, and his team for their
support with understanding some of the inner workings
of the OpenCL compiler. We would also like to thank David
Roazen, Louis Bergelson, Lee Lichtenstein, and Eric Banks
from the Broad Institute, as well as John Sotir and Richard
Yang, for making this project possible.

9 References
[1] �Van der Auwera, Geraldine A., et al., “From FastQ Data

to High Confidence Variant Calls: The Genome Analysis
Toolkit Best Practices Pipeline.” http://www.ncbi.nlm.nih.
gov/pmc/articles/PMC4243306/.

[2] �Altera SDK for OpenCL Programming Guide, Version
14.0, Altera Corporation (2014). https://go.altera.com/
extranet2001/products/design_software2/opencl/files/
aocl_programming_guide_14.0.pdf.

[3] �“Altera SDK for OpenCL is First in Industry to Achieve
Khronos Conformance for FPGAs,” Altera Corporation
(2013). http://www.prnewswire.com/news-releases/
altera-sdk-for-opencl-is-first-in-industry-to-achieve-
khronos-conformance-for-fpgas-227993801.html.

[4] �Settle, Sean, “High-performance Dynamic Programming
on FPGAs with OpenCL” (2013). http://ieee-hpec.
org/2013/index_htm_files/29-High-performance-
Settle-2876089.pdf.

[5] �OpenCL Specification, Version 1.2, Khronos Group (2012).
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf.

[6] �The GATK Guide Book, Version 3.4-46, Broad Institute
(2015). https://www.broadinstitute.org/gatk/guide/
version-history.

[7] �Oliver, Timothy, Bertil Schmidt, et al. “Accelerating the
Viterbi Algorithm for Profile Hidden Markov Models Using
Reconfigurable Hardware” (2006). https://link.springer.
com/chapter/10.1007/11758501_71.

[8] �Ito, Megumi, and Moriyoshi Ohara, “A Power-efficient
FPGA Accelerator: Systolic Array with Cache-
coherent Interface for Pair-HMM Algorithm,” IBM
Research – Tokyo (2016). http://ieeexplore.ieee.org/
document/7503681/?reload=true.

[9] �Ren, Shanshan, Koen Bertels, and Zaid Al-Ars,
“Exploration of Alternative GPU Implementations of the
Pair-HMMs Forward Algorithm.” https://ce-publications.
et.tudelft.nl/publications/1562_exploration_of_
alternative_gpu_implementations_of_the_pair.pdf.

		 Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as SYSmark* and MobileMark*, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

		 Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.
		 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system

configuration. Check with your system manufacturer or retailer or learn more at www.intel.com.
		 Intel, the Intel logo, Arria, Stratix, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
		 *Other names and brands may be claimed as the property of others.
		 Java is a registered trademark of Oracle and/or its affiliates.
		 OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
		 © 2017 Intel Corporation. All rights reserved. 0917/ML/MESH/PDF 336193-001US

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243306/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243306/
https://go.altera.com/extranet2001/products/design_software2/opencl/files/aocl_programming_guide_14.0.pdf
https://go.altera.com/extranet2001/products/design_software2/opencl/files/aocl_programming_guide_14.0.pdf
https://go.altera.com/extranet2001/products/design_software2/opencl/files/aocl_programming_guide_14.0.pdf
http://www.prnewswire.com/news-releases/altera-sdk-for-opencl-is-first-in-industry-to-achieve-khronos-conformance-for-fpgas-227993801.html
http://www.prnewswire.com/news-releases/altera-sdk-for-opencl-is-first-in-industry-to-achieve-khronos-conformance-for-fpgas-227993801.html
http://www.prnewswire.com/news-releases/altera-sdk-for-opencl-is-first-in-industry-to-achieve-khronos-conformance-for-fpgas-227993801.html
http://ieee-hpec.org/2013/index_htm_files/29-High-performance-Settle-2876089.pdf
http://ieee-hpec.org/2013/index_htm_files/29-High-performance-Settle-2876089.pdf
http://ieee-hpec.org/2013/index_htm_files/29-High-performance-Settle-2876089.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://www.broadinstitute.org/gatk/guide/version-history
https://www.broadinstitute.org/gatk/guide/version-history
https://link.springer.com/chapter/10.1007/11758501_71
https://link.springer.com/chapter/10.1007/11758501_71
http://ieeexplore.ieee.org/document/7503681/?reload=true
http://ieeexplore.ieee.org/document/7503681/?reload=true
https://ce-publications.et.tudelft.nl/publications/1562_exploration_of_alternative_gpu_implementations_of_the_pair.pdf
https://ce-publications.et.tudelft.nl/publications/1562_exploration_of_alternative_gpu_implementations_of_the_pair.pdf
https://ce-publications.et.tudelft.nl/publications/1562_exploration_of_alternative_gpu_implementations_of_the_pair.pdf

	Abstract
	1 Introduction
	2 Heterogeneous Computing and the OpenCL™
Computing Language
	2.3 The Intel® FPGA SDK for OpenCL Technology
	2.2 Programming with FPGAs
	2.1 FPGA Technology
	2.4 FPGA Device Targets
	3 Genome Analysis
	3.1 Genome Variant Discovery
	3.2 The Genome Analysis Tool Kit (GATK)
	3.3 PairHMM Algorithm Overview
	3.4 PairHMM FPGA Implementation

	4 Experiment
	4.1 Choosing an Optimal Compute Grid Size
	4.2 Concatenating Reads and Haplotypes

	5 Results
	5.1 FPGA Utilization
	5.2 Performance

	6 GATK Integration
	7 Conclusion
	8 Acknowledgments
	9 References

