
Abstract
With the rapid decrease in gene sequencing costs due to the emergence of second-
generation sequencing equipment, the availability of genome sequence data is 
increasing dramatically. The ability to correlate the variations among genomes 
is enabling advances in a wide range of medical research and personalized care. 
Because each human genome comprises more than three billion base pairs, whole 
genomic sequencing requires significant processing power, storage capacity, and 
network bandwidth. In particular, variant calling is extremely computationally 
intensive. The Genome Analysis Toolkit (GATK) is a software package developed 
at the Broad Institute to analyze high-throughput sequencing data. This paper 
describes the acceleration of the GATK’s HaplotypeCaller algorithm using Intel’s 
field programmable gate array (FPGA) devices, programmed using the Intel® FPGA 
SDK for OpenCL™ technology.
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1 Introduction
Genomic variant discovery may appear to be a straightforward problem that 
consists of mapping reads to a reference sequence and at every position, counting 
the mismatches and construing the genotype variants. However, multiple sources 
of error in the sequence data make this process much more complex than it at first 
appears. These potential errors include amplification biases that may occur during 
wet lab preparation, machine errors during library sequencing, and software 
errors and mapping artifacts during read alignment. “A good variant calling 
workflow must involve data preparation methods that correct or compensate for 
these various error modes.” [1] These diverse errors make variant discovery a 
computationally intensive undertaking. Modern variant caller algorithms can take 
up to several days of computation time using standard microprocessors.

2 Heterogeneous Computing and the OpenCL™  
Computing Language
In the field of high-performance computing, heterogeneous computing systems 
are emerging to solve a wide range of challenges. A standard CPU with an attached 
accelerator device such as a GPU or field programmable gate array (FPGA) can 
be used to accelerate a wide range of functions including data search, image 
processing, and financial or seismic simulations. With the emergence of these 
heterogeneous systems, programming standards have emerged to allow easier 
adaptation (and acceleration) of algorithms from standard systems.
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OpenCL is a framework for writing programs that execute 
across heterogeneous platforms consisting of CPUs, GPUs, 
digital signal processors (DSPs), FPGAs, and other multicore 
processors. It includes a language based on standard ANSI 
C99 for programming these devices, and APIs to control the 
platform and execute programs on the compute devices. The 
OpenCL standard is managed by the Khronos Group, a non-
profit organization. [2] The portability of programs among 
accelerator devices from different vendors is a significant 
advantage of OpenCL. Several vendors, including Intel, AMD, 
and NVIDIA, provide OpenCL-conformant compilers. In order 
to claim conformance to the OpenCL standard, the vendor’s 
compiler must accurately compile and execute a suite of 
more than 8,500 OpenCL programs. [3]

2.1 FPGA Technology
FPGAs are reconfigurable integrated circuits that consist 
of programmable routing networks linking together logic 
array blocks, embedded memory blocks, and DSP blocks, in 
contrast to the fixed data paths and topologies found in CPUs 
and GPUs that process program instructions. FPGA resources 
may be configured and linked together to create custom 
instruction pipelines through which data is processed. 
“Dynamically creating custom pipelines to process each 
target application increases throughput, performance, and 
power efficiency by reducing the amount of superfluous 
functional units in silicon.” [4] The FPGA architecture can be 
used to solve certain types of computing problems efficiently.

2.2 Programming with FPGAs
Hardware developers have traditionally designed and 
verified digital circuits on FPGAs at the register-transfer 
level (RTL) using hardware description languages such as 
Verilog and VHDL. While these traditional methods are 
effective for ensuring efficient use of the devices, they are 
impractical for the implementation of complex algorithms 
such as gene sequencing. In early 2012, Altera Corporation 
introduced the Altera SDK for OpenCL, which allows use 
of the OpenCL programming language to program Intel’s 
FPGAs as computing accelerator devices. The Altera SDK was 
rebranded as the Intel® FPGA SDK for OpenCL technology 
following Intel’s acquisition of Altera in 2015. In late 2014, 
Xilinx Corporation, another leading FPGA vendor, announced 
development of a compiler for OpenCL as well. 

2.3 The Intel® FPGA SDK for OpenCL Technology
The Intel FPGA SDK for OpenCL technology has been used 
for a wide array of algorithms in a variety of computing 
fields. This SDK uses the same programming model as 
other vendors’ compilers. Figure 1 illustrates the SDK’s 
programming flow. The system requires an FPGA-based card 
designed for the OpenCL SDK, available from a variety of 
vendors. No additional RTL-level programming is required; 
the FPGA is programmed entirely using OpenCL.

Figure 1. Intel® FPGA SDK for OpenCL™ technology usage model.
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main() {
     read_data( … );
     manipulate( … );
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}
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The OpenCL program consists of host code that is intended 
to run on a standard CPU, and the kernel code, which is 
intended to run on the accelerator (in this case, the FPGA). 
Using the standard IDE and GCC* compiler, a programmer 
writes and compiles host code but uses the OpenCL API 
to communicate with the OpenCL kernel. In a separate .cl 
file, the programmer writes with OpenCL C following the 
appropriate optimization guidelines for the FPGA. The 
OpenCL kernel file is compiled using the Intel FPGA offline 
compiler and actually runs Quartus* in the background to 
produce the .aocx file. At runtime, the Intel FPGA offline 
compiled executable is downloaded to the FPGA. All of the 
tools and processes typically used by FPGA designers are 
abstracted away, because this entire process occurs in the 
familiar software programmer’s environment. [5]

2.4 FPGA Device Targets
For the purposes of this experiment, the HaplotypeCaller 
code is partitioned to run on both the host and the FPGA, to 
optimize performance. The OpenCL complier was targeted 
to build the code for an Intel® Arria® 10 FPGA. The Intel Arria 
10 FPGA is part of Intel’s high-end family of devices and is 
built using 20nm silicon process technology. This relatively 
new process technology enables the Intel® Arria® 10 device 
to have more logic elements, DSPs, and memory, as well as 
run at higher frequencies than if it were manufactured using 
older technologies. It has advanced, hardened floating-
point elements that make floating-point functions more 
efficient than those implemented using standard logic. These 
features make it possible to fit more computational blocks, 
optimizing performance and performance per watt for the 
HaplotypeCaller algorithm.

3 Genome Analysis
3.1 Genome Variant Discovery
The process of identifying differences between DNA 
sequences is called variant discovery. The ability to identify 
variations in DNA has become essential for medical research 
and personalized medical care. Research projects that 
seek to compare hundreds or thousands of sequences are 
often stifled by the amount of compute time and resources 
required. Therefore, many in the medical and high-tech 
communities are pursuing acceleration of variant discovery.

Using a robust calling algorithm that not only compares 
sequences but also leverages meta-information such as 
base qualities scores variant discovery can be performed on 
the appropriately processed data. To minimize errors, it is 
desirable to include as many potential variants as possible. 
“Once a highly-sensitive call set has been generated, 
appropriate filters can be applied to achieve the desired 
balance between sensitivity and specificity.” [6]

3.2 The Genome Analysis Tool Kit (GATK)
The GATK is a software package developed at the Broad 
Institute to analyze high-throughput sequencing data. It 
offers a wide variety of tools, with a primary focus on variant 
discovery and genotyping as well as a strong emphasis on 
data-quality assurance.

The HaplotypeCaller function within the GATK is the variant 
discovery algorithm. The main algorithm to compare 
sequences is called the PairHMM. It is used to call SNPs and 

indels simultaneously via local re-assembly of haplotypes in 
an active region. The basic operation of the HaplotypeCaller 
defines ActiveRegions, determines haplotypes by reassembly 
of the ActiveRegion, determines likelihoods of the haplotypes 
given the read data, and assigns sample genotypes. [6]

By using significant variation evidence, the areas to be 
further analyzed are identified as the ActiveRegions. The 
program then creates a De Bruijn-like graph to reassemble 
the ActiveRegions and detect the possible haplotypes, which 
are then realigned using the Smith-Waterman algorithm. 
Using the PairHMM algorithm, the ActiveRegions are pairwise 
aligned against each haplotype to produce a matrix of 
likelihoods of haplotypes based on the read data. This is 
then relegated to create the likelihoods of alleles for each 
potential variant site. [6]

3.3 PairHMM Algorithm Overview
The process of comparing two gene sequences is not as 
simple as comparing two regular strings, because each 
sequence may contain insertions, deletions, and mutations. 
The hidden Markov models in the PairHMM algorithm are 
used to calculate the probability of a match with these 
possible changes. Because the exact alignment is not known, 
a comparison must be performed with each alignment.

The input to the algorithm requires two gene sequences. The 
first is the read sequence, which contains the gene string 
and some quality factors based on how it was read in. The 
second sequence is the haplotype sequence, which is simply 
a gene string without any additional data. Each sequence is 
compared with the PairHMM hidden Markov model equation, 
and the result is passed to the next diagonal. The next 
diagonal compares the same two sequences again but with a 
different alignment. The different alignment is just a shift in 
sequence by one for each diagonal. Figure 2 shows two tiny 
sequences and the iteration of diagonals with the shifting of 
the alignment.

   read: CAT
   haplotype: ATG

CAT
G
CAT
TG
CAT
ATG
CAT
 AT
CAT
  A

D=0

D=1

D=2

D=3

D=4

Read length 3
Haplotype length 3
Number of diagonals = 3 + 3 - 1 = 5
Number of PairHMM calculations = 5 x 3 = 15

Figure 2. The process of comparing each alignment of two 
small sequences.
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The hidden Markov comparison result is a single probability 
score, but the floating-point math used is computationally 
expensive. If the length of each sequence is n, the 
computation requirement is O(n^2). Also, each calculation 
depends on previous calculations from the previous row 
and diagonal. Figure 3 shows these dependencies. The 
probability at the end of each diagonal is added up to give 
an overall score for all the alignments of each sequence. This 
score determines how well the two sequences match with 
all alignments. Each box in Figure 3 shows how the result of 
the PairHMM calculation for two sequence characters is used 
in subsequent calculations. This type of structure is called a 
systolic array and readily lends itself to being mapped to an 
FPGA fabric.

4 Experiment
The HaplotypeCaller Algorithm within the GATK was initially 
written in Java*. The Broad Institute then converted the 
algorithm to C++. For our experiment, we ported the PairHMM 
algorithm that was originally written by the Broad Institute 
[6] from C++ to OpenCL. The fact that OpenCL is a C-based 
language made it fairly straightforward to port the algorithm. 
Also, the code was well optimized, and constant values that 
were needed were already precalculated. The code was 
tested for functional correctness with the emulator that is 
part of the Intel FPGA SDK for OpenCL technology, and we 
used the test cases that came with the Broad Institute’s C++ 
source code.

The code was then targeted to an Intel Arria 10 device on a 
reference development platform. The compiler produced an 
optimized .aocx file, which was loaded into the Intel Arria 10 
device. Measurements of runtime performance were taken.

4.1 Choosing an Optimal Compute Grid Size
The FPGA accelerates this algorithm effectively because the 
algorithm can be mapped to a 2D systolic array. In Figure 3, 
the top computations feed the bottom computations, and the 
results trickle through the compute units in the grid. Sizing 
this grid required a bit of experimentation. If the compute 
grid is too wide, the m20k blocks will increase, because the 
accesses will be wider, but the depth will be shallower. If the 
depth needed is less than the physical depth of the m20k 
block, the block will be underutilized. There are several 
variables that must be loaded from memory for each column, 
greatly amplifying this effect.

If the depth of the compute grid is too great, too many 
haplotype characters will have to be read from DDR 
memory simultaneously. This will exhaust the DDR memory 
bandwidth. Also, adders are needed at the end of row. As a 
result, increasing the depth will increase the number of these 
adders linearly.

When the OpenCL compiler builds the functions for an Intel  
Arria 10 FPGA, it is able to fit 208 PairHMM processing elements  
in an 8x26 grid. This is completely pipelined. Figure 4 shows 
a visual representation of a smaller 4x4 compute grid. 
Due to the hardened floating-point capability, along with 
additional logic, memory, and switching fabric within the 
more advanced device, the Intel Arria 10 FPGA can fit more 
processing elements than earlier devices.

4.2 Concatenating Reads and Haplotypes
In addition to optimizing the grid size, the input reads and 
haplotypes were concatenated to provide the kernel with 
a constant flow of inputs to minimize the latency of data 
transfer and global and local memory access. Additional logic 
was added to the kernel to ensure correct functionality for 
each read and haplotype pair. The stream of output results 
was then reassembled in the host to match the expected 
outcome of the application.

r0d0 r1d0 r2d0 …

r0d1 r1d1 r2d1 …

r0d2 r1d2 r2d2 …

… … … …

Figure 3. The dependencies among calculations in a Hidden 
Markov comparison.

3.4 PairHMM FPGA Implementation
This algorithm can be substantially optimized on a CPU 
using vector instructions. If the sequences are small, the 
comparison can be done entirely using the CPU’s internal 
Level 1 cache. However, with larger sequences, the external 
memory bandwidth of the CPU may become a performance 
limiter, particularly because each calculation must be broken 
up into separate instructions. These types of algorithms 
also work well on FPGAs. An FPGA typically has a lower 
clock speed than a CPU but can take advantage of pipelined 
parallelism to do hundreds of complex calculations in 
parallel, running one after another each cycle inside the 
pipeline. Intel’s FPGA SDK for OpenCL compiler analyzes 
the code and builds these pipelines automatically. The lower 
clock speed of the FPGA typically enables applications to 
consume far less power.
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5 Results
5.1 FPGA Utilization
Table 1 shows FPGA resource utilization for the Intel Arria 10 
device. As expected, the Intel Arria 10 FPGA was able to fit 
more computation blocks for the PairHMM algorithm because 
of the hardened floating-point DSP. The DSP utilization was 
almost 100 percent in the Intel Arria 10 FPGA because of this 
factor. Maximum frequency (fmax) for the Intel Arria 10 device 
was 232 MHz.

5.2 Performance
Cell updates per second (CUPS) is a performance measure 
commonly used in computational biology that represents 
the number of matrix cells updated each second. [7] For 
PairHMM, the number of cells in the matrix is the read 
length multiplied by the haplotype length. Therefore, the 
performance for one PairHMM calculation is as follows:

     (read length × haplotype length) ÷ PairHMM time

Here, PairHMM time includes the time to prepare the data on 
the CPU, transfer the data to the FPGA, calculate the result on 
the FPGA, and then transfer the result back to the CPU. In this 
paper, the results are presented using Giga-CUPS (GCUPS) as 
the unit.

The functionality and performance measurement of the 
PairHMM algorithm was performed using data captured while 
running the GATK HaplotypeCaller application. PairHMM 
performance on similar whole-genome sequences was tested 
on multiple platforms. In total, 1,584,272,000 batches were 
used for computation on the platforms, as outlined in Table 2. 
The IBM and Xilinx results were presented by IBM Research in 
2016. [8] The NVIDIA Tesla* K40 results presented in the third 
row were published by researchers at the Delft University of 
Technology. [9]

FIELD PROGRAMMABLE 
GATE ARRAY (FPGA)

PAIRHMM COMPUTE 
BLOCKS FMAX (MHZ) LOGIC UTILIZATION

DIGITAL SIGNAL 
PROCESSOR 
UTILIZATION

Intel® Arria® 10 GX FPGA 208 232 236k/427k (55%) 1508/1518 (99%)

IMPLEMENTATION PEAK PERFORMANCE 
[GIGA-CUPS (GCUPS)]

AVERAGE PERFORMANCE 
(GCUPS)

One core [Intel® Advanced Vector Extensions (Intel® AVX) 
technology] on the Intel® Xeon® processor E5 v4 product familya 0.699 0.676

44 cores (Intel AVX technology) on the Intel Xeon processor E5 
v4 product familya 22.0 21.2

NVIDIA Tesla* K40 [9] 12.79 N/A

Power8* eight-core 8284-22A [8] 0.809 N/A

Xilinx Kintex* Ultra Scale XCKU060 [8] 1.746 N/A

Intel® FPGA SDK for OpenCL™ technology on Intel® Arria® 10 GX 
FPGA development boardb 44.43 33.8

Table 1. FPGA compilation results for the PairHMM algorithm.

Table 2. Performance results comparing various platforms.
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Figure 4. Visual representation of OpenCL™ 4x4 PairHMM 
algorithm implementation.

a �System configuration: Intel® Xeon® processor E5-2699 v4 @ 2.20 GHz, 2 sockets/22 cores per socket, 256 GB RAM, 2 TB Intel® SSD Data 
Center P3700 Series.

b �System configuration (for last row of Table 2): Intel® Xeon® processor E5-2697 v2 @ 2.70 GHz, 2 sockets/12 cores per socket, 128 GB RAM, 
2 TB Seagate HDD ST2000DM001*.



White Paper | Accelerating Genomics Research with OpenCL™ and FPGAs

6 GATK Integration
The PairHMM FPGA accelerator has been integrated into 
the GATK through the Genomics Kernel Library (GKL) 
library. The GKL provides the GATK with a simple API, which 
is common for Intel® Advanced Vector Extensions (Intel® 
AVX) technology, OpenMP* with Intel AVX technology, and 
FPGA implementations of PairHMM. The GATK includes 
options to select a specific PairHMM implementation, 
as well as the capability to select the fastest available 
PairHMM implementation on the platform. By using the GKL 
approach, FPGA-accelerated PairHMM was added to the 
HaplotypeCaller and MuTect2 tools in GATK3 and GATK4 with 
few coding changes in the GATK.

7 Conclusion
The Intel FPGA SDK for OpenCL technology enabled simple, 
effective implementation and testing of the PairHMM 
algorithm for the GATK from the Broad Institute. The Altera 
FPGA shows significant performance acceleration relative to 
other technologies. Comparing the peak performance with 
IBM POWER8* and Xilinx platforms, the Intel Arria 10 device 
recorded speeds of up of 55x and 25x, respectively. Upon 
integration with the GATK Best Practices pipeline, the overall 
pipeline speed-up was 1.2x compared to the Intel AVX 
technology implementation. Possible future work includes 
the following:

• �Incorporate the accelerated algorithms into the complete 
GATK.

• �Implement compression algorithms in the FPGA to enable 
more effective storage and transportation of genome data 
along with acceleration of analysis engines such as the GATK.

• �Port to the recently announced Intel® Stratix® 10 FPGA to 
potentially achieve further performance scaling.

Further optimization of the OpenCL code could be done as 
well. For instance, in the current design, the result adder chain 
in Figure 4 is not fully utilized every cycle. An improvement 
would be to mux one of the adders from the HMM calculation 
so that the hardware could be shared. This type of 
optimization, called resource folding, would allow chip area to 
be reduced so that freed DSP resources could be used to add 
more computation units, increasing performance.
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