
Table of Contents
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1
Shortening Time to Market. .  .  .  .  .  .  .  .  .  2
Advanced Features. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3
Conclusion. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4

Authors
Denis Matoušek

Product Manager,  
Netcope Technologies

Viktor Puš
Chief Technology Officer (CTO),  

Netcope Technologies

Miroslaw Walukiewicz
Solution Architect, 
Intel Corporation

NFV Acceleration
P4 Compiler

Making Virtualized Mobile 
Gateways More Efficient

Introduction
This white paper discusses the modern trend of using smart network interface 
cards (NICs) in the segment of mobile telecommunications networks where they 
help with performance sustainability in virtualized environments. In 4G networks, 
many network functions are being implemented in virtual machines or containers 
instead of using dedicated hardware. Obtained flexibility is redeemed with so high 
demands on CPU cores that it makes it very difficult to process all the traffic. With 
the approach of 5G networks, the demands for increased performance because of 
higher peak data rates and user experienced data rates and reduced latency are 
merciless. Utilizing the Intel® FPGA Programmable Acceleration Card (Intel FPGA 
PAC) N3000 can improve overall server density by offloading workloads, the CPU 
can be used for more complex tasks of the control plane, and thus reduce the 
overall number of servers and consequently capital and operational expenses. 
The white paper shows how the Intel FPGA PAC N3000 can be used together with 
Netcope P4 service to deliver a mobile network core offload in an unprecedentedly 
short time.

The key idea lies in the separation of control and user plane. The functions of the 
user plane (i.e. the fast path) are good candidates for offload in the Intel FPGA PAC 
N3000. These functions are often straightforward but require high performance.  
There are functions running both within and on the edge of evolved packet core 
(EPC) in 4G networks or 5G core (5GC) in 5G networks. In the case of 4G networks, 
the functions are performed in serving gateway (S-GW) and packet data network 
gateway (PDN-GW) components and in the case of 5G networks, it is the user plane 
function (UPF) component, but, the functions remain almost the same: packet 
filtering, quality of service (QoS) enforcement, flow-based charging, data buffering 
and others. On the edge of the core, GTP-U encapsulation and decapsulation is 
performed for the access network and firewalling, Network address translation 
(NAT), Deep Packet Inspection (DPI), parental control, video and web optimization, 
and others are performed for the external network (i.e. Internet). The situation is 
depicted in Figure 1.

Figure 1.	 The functions performed on a user plane of a 5G core network for 
consideration using smart NIC offload

Intel® FPGA PAC

Access Network External Network

Core Network

Packet Data
Network

Firewalling,
NAT. DPI

GTP-U
Encapsulation

Packet Filtering,
QoS

NN User Plane
Function

white paper



2

White Paper | Making Virtualized Mobile Gateways More Efficient

Shortening Time to Market
To make the Intel FPGA PAC N3000 accessible to a broader audience of network engineers and to shorten the development cycle 
and overall time to market, Netcope offers a service of converting a program written in P4 language to the firmware that targets 
the Intel FPGA PAC N3000. P4 is a high-level, domain-specific language targeting network applications. Traditional FPGA design 
cycles using languages like VHDL or Verilog can be shortened from weeks to days1. The conversion process of a P4 program to 
the firmware for the Intel FPGA PAC N3000 is shown in Figure 2:

Using Netcope P4 is so straightforward in that traditional 
knowledge of FPGA design is not required. For those who 
need to integrate their packet processing functionality into 
their custom hardware platform, there is always an option 
to generate an intellectual property (IP) core in the form of a 
netlist.

The functions that are really complex and are out of the 
scope of P4 language can be included in the form of externs. 
This feature of P4 language allows using 3rd party IP cores 
in the P4 processing pipeline. Examples of such functions 
are QoS, more particularly hierarchical QoS (HQoS), DPI, and 
encryption (e.g IPsec).

Particular functions that were considered for offload are 
mapped to the features of P4 language according to Table 1.

Figure 2.	 Using Netcope P4 to convert a program written in P4 language to the firmware for the Intel FPGA PAC N3000

Table 1.	 Mapping functions considered for offload to 
the features of P4 language

Function Feature of P4 language

Packet filtering
Header field lookup and packet 
forwarding/drop using match and action 
tables of P4 language

QoS enforcement HQoS engine delivered as an extern of P4 
language

Flow-based 
charging

Updating a large array of counters of 
P4 language instantiated in DRAM or 
memories

GTP-U 
encapsulation and 
decapsulation

Header removal and insertion in P4 
language

Firewalling
Header field lookup and packet 
forwarding or drop using match and 
action tables of P4 language

NAT

Header field lookup in DRAM memories 
and header field update including 
checksum re-computation in P4 
language

DPI Pattern-matching engine as an extern of 
P4 language

Design and Deploy Web Interface Cloud Processing

Write P4 Code

Deployment

User Login

Upload P4 code

FPGA
Firmware

Compile P4

Link IP Cores

Run Synthesis



3

White Paper | Making Virtualized Mobile Gateways More Efficient

To demonstrate how straightforward it is to use the P4 language, snippets of the P4 code that do actual GTP-U decapsulation 
and load balancing are shown in Example 1.

Protocol Headers Protocol Parser, GTP-U Decapsulation and Load Balancing

// GTP-U mandatory fields
header _ type gtpu _ mandatory _ t {
  fields {
    version : 3;
    protocol _ type : 1;
    // ... omitted
    messType : 8;
    messLength : 16;
    teid : 32;
  }
}

// GTP-U optional fields
header _ type gtpu _ optional _ t {
  fields {
    seqNumber : 16;
    nPduNumber : 8;
    nextExtHdrFlag : 8;
  }
}

// Header instances
header gtpu _ mandatory _ t 
  gtpu _ mandatory;
header gtpu _ optional _ t 
  gtpu _ optional;

// Definition of hash fields
field _ list gtpu _ fields {
  gtpu _ mandatory.teid;
  inner _ ipv4.srcAddr;
  inner _ ipv4.dstAddr;
}

// Definition of hash for load balancing
calculation field _ list _ calculation gtpu _ csum {
  input {
    gtpu _ fields;
  }
  algorithm : csum16;
  output _ width : 8;
}

parser parse _ gtpu _ mandatory {
  // Extract mandatory part of GTP-U
  extract(gtpu _ mandatory);

  // Parse optional GTP-U header if present
  return select(latest.extHdrFlag, 
    latest.seqNoFlag, latest.nPduNoFlag) {
      1 mask 1, 2 mask 2, 4 mask 4 :
        parse _ gtpu _ optional;
      default : parse _ inner _ ipv4;
  }
}

action decapsulateAndDistributeGtpU() {
  // Hash header fields
  modify _ field _ with _ hash _ based _ offset(
    gtpu _ metadata.hash, 0, gtpu _ csum, 65536);
  // Remove GTP-U headers
  remove _ header(gtpu _ mandatory);
  remove _ header(gtpu _ optional);
  // Perform load balancing over 32 channels
  modify _ field(intrinsic _ metadata.egress _ port, 
    gtpu _ metadata.hash, 31);
}

Example 1.   Snippets of the P4 code that do actual GTP-U decapsulation and load balancing

Advanced Features
Netcope P4 supports external components that are available 
on the Intel FPGA PAC N3000 platform including DDR and 
QDR memories and Intel Ethernet controller XL710.

Storing items of match and action tables in the FPGA chip leads 
to very fast access with very low latency but provides relatively 
low capacity. If the items are stored in external memories, the 
capacity is significantly bigger depending on mounted memory 
modules. The situation is depicted in Figure 3.

Figure 3.	 Intel FPGA PAC N3000 with P4 pipeline with match 
and action table using external on-board DDR4 
memory (shown in orange) to extend the capacity

P4 Pipeline

Intel® FPGA PAC

DDR4

DDR4

Intel 

Intel 



4

White Paper | Making Virtualized Mobile Gateways More Efficient

In the case of a mobile core network, external memories are 
suitable for storing a large array of counters, which are used 
for flow-based charging, or for storing NAT flow table.

Intel Ethernet controllers XL710 supplement the onboard 
FPGA chip and implement fundamental functionality that 
is used in NICs most often including various receive filters, 
LAN engine, support of single root I/O virtualization (SR-IOV), 
receive-side scaling (RSS), and so on. With this approach, 
you do not need to bother with implementing such basic 
functionality so that you can focus on the offload itself and 
leverage massive parallelism that is available in the Intel 
Arria® 10 FPGA.

Conclusion
A summary of the key ideas we discussed in the white paper 
are as follow:

•	 Solving performance bottlenecks of virtualized functions 
by offloading the bottlenecks to the Intel FPGA PAC 
N3000

•	 The Intel FPGA PAC N3000 has the ability for firmware 
upgrades and achieving unparalleled flexibility

•	 Offloading to the Intel FPGA PAC N3000 saves CPU 
cores for more complex tasks of the control plane, thus 
reducing the overall number of servers and consequently 
capital expenditures (CapEx) and operating expenses 
(OpEx)

•	 Shortening time to market by using high-level language 
for the description of the hardware offload

•	 Mapping features functions of a mobile network core to 
the features of P4 language

•	 Using Netcope P4 to generate high-performance 
firmware for Intel FPGA PAC N3000 

More information please visit:

•	 www.intel.com/pac-n3000

•	 www.netcope.com/en/products/netcopep4

  Please Recycle

1 For details about the shortened FPGA design cycles or development time, refer to the Building a PoC of Segment Routing at 100G Using FPGA Smart NIC and P4 Language White Paper.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system 
configuration. No product or component can be absolutely secure. Check with your system manufacturer or retailer or learn more at www.intel.com.

Cost reduction scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances and configurations, may affect future costs and provide cost 
savings.  Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system 
hardware, software or configuration may affect your actual performance.

Intel does not control or audit third-party data.  You should review this content, consult other sources, and confirm whether referenced data are accurate.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These 
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on 
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel 
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by 
this notice. 

Notice Revision #20110804

© Intel Corporation. All rights reserved.  Intel, the Intel logo, the Intel Inside mark and logo, Altera and Arria words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/
or other countries. Intel reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use 
of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before 
relying on any published information and before placing orders for products or services. Other marks and brands may be claimed as the property of others.

WP-01296-1.0

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01291-building-a-poc-of-segment-routing-at-100G-using-fpga-smart-nic-and-p4-language.pdf

